扩压器稠度对离心压缩机性能影响的数值分析*

   2011-05-04 689
核心提示: 摘要 : 通过 CFD 手段,比较了几个不同稠度的叶片扩压器性能与内部流场损失分布,分析了稠度的变化对叶片扩压器喉部流动产生的影响,并对叶片扩压器通过减小叶片数和减小叶片弦长来改

摘要 : 通过 CFD 手段,比较了几个不同稠度的叶片扩压器性能与内部流场损失分布,分析了稠度的变化对叶片扩压器喉部流动产生的影响,并对叶片扩压器通过减小叶片数和减小叶片弦长来改变稠度的两种不同方法进行分析,发现通过减小叶片数的方法能够获得较好的压缩机性能。

关键词: 离心式压缩机;叶片扩压器;稠度;弦长;数值模拟

中图分类号:TH452      文献标识码:B

Numerical Analysis on Performance of Centrifugal Compressor with Different Solidity Diffusers

Abstract: The performance and loss distribution in internal flow field of vaned diffuser with different solidity are studied through CFD software. The change of solidity has great impact on the flow in throat area. It is found that the method of reducing vane number with vaned diffuser to change solidity can obtain better compressor performance by comparing the method of reducing vane chord length.

Key words: centrifugal compressor; vaned diffuser; solidity; chord length; numerical simulation

0  引言

  高效率和高压比的离心压缩机设计,除叶轮气动设计外,扩压器内的压力恢复性能也非常重要。无叶扩压器结构简单,性能曲线平坦,应用十分广泛。但无叶扩压器中 , 气流的流动方向角较小 , 速度周向分量大 , 所以流动路程较长 , 摩擦损失大。而在有叶扩压器中 , 叶片的形状和安装情况迫使气流流动的方向角逐渐增大 , 流程缩短 , 摩擦损失小`1`。施小将`2`就为一未达到设计参数的离心压缩机配加有叶扩压器,从而解决了其性能偏低的问题。但在变工况情况下,由于叶片扩压器的进口冲角损失较大,会使效率下降明显。当冲角增大到一定值后,就容易发生强烈的分离现象,导致压缩机的喘振。

  Senoo`3`提出了低稠度叶片扩压器LSD的概念,指出正是几何喉口限制了叶片扩压器的堵塞流量,故除去几何喉口将提供比传统叶片扩压器更好的性能。它的结果表明:LSD在几乎不损失稳定工况范围的情况下,能达到相当好的压力恢复值。 Hayami等人`4`的研究也表明:在亚音速的离心压缩机中 , 稠度为0.69的叶片扩压器可以在不损失流量范围的情况下,获得比无叶扩压器更好的性能。 Engeda`5`8个不同稠度的叶片扩压器进行了试验研究 , 认为当叶片稠度增加时 , 流动范围变窄,压力恢复系数提高。 Prasad Mukkavilli等人`6` 研究结果表明,即使LSD也存在最优稠度和安装角。 Sivan Reddy T CH等人`7`发现扩压器的叶片弦长对静压恢复系数有影响,且叶片表面的静压分布显示,大流量下叶片表面静压要小于小流量下的。赵晓路等人和费继友等人`89`也对LSD的扩压性能进行了分析。

1  叶片扩压器模型

  以某小型离心压缩机为计算模型,设计比转数为2.83,设计流量系数为0.0143,雷诺数为2.24×106。图1为离心压缩机子午面示意图,1-1为叶轮进口,2-2为叶轮出口,3-3为扩压器进口,4-4为扩压器出口。图2为叶轮与扩压器安装示意图,叶轮按逆时针旋转。同一叶轮匹配了7个不同的叶片扩压器和一个无叶扩压器VNL

  叶片的稠度:б=b/t=b/(2πr/n),其中b为叶片弦长;n为叶片数;r为叶栅进口半径。故叶片的稠度变化可以通过改变弦长b或叶片数n得到。计算中采用的7个不同的叶片扩压器Vn190Vn165Vn114Vn090Vn064Vb090Vb064,其中V指叶片扩压器;n/b表示改变的是叶片数n/弦长b;后3位数字则是叶片扩压器稠度的100倍值。Vn190即指弦长b不变,叶片数n变化,稠度为1.9的叶片扩压器。


 

1 离心压缩机子午面示意图        图2 叶轮与扩压器安装示意图

2  数值方法

  流场数值计算是应用Fine/Turbo软件求解三维定常Navier-Stokes方程组得到的。湍流模型选用Spalart-Allmaras模型。康顺等人`10`Fine/Turbo软件求解的一个高压比离心叶轮三维定常流场结果与试验结果进行了详细的对比确认,60万以上网格数得到的计算结果与试验结果相比是基本可信的。

  将叶轮与扩压器放在一起做网格,这样的网格进行计算不仅能方便准确的获得扩压器的进口条件,更能将下游扩压器对上游叶轮的扰动也考虑进来,从而达到更接近真实现象的结果。网格整体采用C型网格,叶轮的前缘、尾缘和扩压器的尾缘处作为钝体处理,网格总数约为80万。

3  扩压器总体性能与内部损失分析

3.1  总体性能

  图3是不同扩压器的离心压缩机等熵效率曲线,图4是静压比曲线,扩压器Vn165Vn114Vn064稠度递减。由图3、图4中看出,叶片扩压器在小流量范围内静压比和等熵效率都较高, 但在大流量下各叶片扩压器就都下降了。由图3看出在稠度较高时,最大效率值和小流量下的效率和压比较高,但其在大流量下效率和压比都急剧下降。随着稠度降低,最高效率值越低,但效率曲线越平坦,大流量下的压比和等熵效率的下降也越慢,同时扩压器的最佳效率点也越往大流量方向偏移,压缩机的流量范围也变宽了。但当稠度降低到1.14Vn114以后,继续降低稠度,压缩机级的最大效率值降低了,而流动范围的增大却不明显了。这现象应证了Senoo`1`的结论, 扩压器的喉部面积影响了压缩机的流量范围,喉口消除后流量范围就很小了。

  与上述几个减小叶片数降稠度得到的结果相比较,削减尾缘得到的稠度为0.64的叶片扩压器Vb064的等熵效率和静压下降得更快。虽然它的喘振流量范围略宽,但它在略大于设计工况流量下的效率很快就下降到低于无叶扩压器。

 
 

图3 不同扩压器下离心压缩机级的等熵效率 图4 不同扩压器下离心压缩机级的静压比

   5为通过改变叶片数变稠度得到的扩压器 Vn190~ Vn064 的离心压缩机级在不同流量下的等熵效率曲线图;图6为不同流量下扩压器Vn190Vn064 的离心压缩机级的静压比图,Φ/Φ0为实际流量与设计流量之比。从图5中可看出,离心压缩机的最大效率值存在最佳值,叶片数为13,稠度为1.65的扩压器Vn165的最高效率值最大。但稠度较大的Vn190Vn165在大流量Φ/Φ01时的等熵效率和静压比下降明显。而在稠度降低后,大流量下的等熵效率和静压比下降就缓慢多了,且其最大效率值和小流量φ/φ01时的等熵效率和静压比的下降并不显著。

  故综合考虑,稠度为1.14的扩压器Vn114为合适的选择,虽然它的最大效率值和小流量下的效率略低于Vn165,但在非设计工况下的等熵效率和静压比减小量较小,且从图3中也可看出其流动范围已十分宽广。

   

 
 

图5变扩压器叶片数目的离心压缩机等熵效率 图6变扩压器叶片数目的离心压缩机级静压比

  在稠度相同时,弦长的不同,使得各叶片扩压器之间的差异也很大。为了更清楚地进行比较,图7给出了稠度σ=0.64 不同降稠方式下的离心压缩机级的等熵效率曲线,图8σ=0.64时离心压缩机级的静压比曲线。空心点表示的是改变叶片数降稠度得到的结果;实心点表示的是削减尾缘降稠度得到的结果。从这两个图看出,与通过减少叶片数得到的结果相比,修剪尾缘降低稠度得到的静压比和效率在整个流量范围内都要低得多。

 

7 σ=0.64不同降稠方式下离心压缩机级的等熵效率  8 σ=0.64时离心压缩机级的静压比

3.2  内部损失分析

  为说明扩压器内部不同截面处的流动损失分布,将扩压器沿流动方向从进口到出口均匀地截00.250.50.751五个截面。定义总压损失系数为Cpt=(pt3-pt)/(pt3-p3)。其中pt为当地总压;pt3为扩压器进口总压;p3为扩压器进口静压。故Cpt 值越大,就表明该处总压损失越大。

  

图9 φ/φ01扩压器内的总压损失分布  图10 φ/φ01扩压器内的总压损失分布

  图9为小流量φ/φ01时不同扩压器内总压损失系数分布,图10为大流量φ/φ01时不同扩压器内总压损失系数分布。从两图中看出,尽管Vb064在前4个流道截面内的流动损失并不十分明显,但在扩压器的出口截面上损失却是最大的,流道75%截面处是扩压器Vb064的叶片尾缘,从叶片尾缘到扩压器出口之间的无叶区域流道内的总压损失的急剧增大。

4  结论

  ( 1 )离心压缩机的最大效率值在不同稠度范围内存在最大值。

  ( 2 )扩压器的喉部面积影响了压缩机的流量范围:稠度越低,离心压缩机流动范围越宽广;但在消除喉口后,继续降低稠度,离心压缩机的等熵效率和压比会下降,但流动范围的增大就很小。

  ( 3 )在相同稠度下,减少叶片数得到的效果要优于修剪尾缘所得到的,且扩压器内消减尾缘后存在的无叶空间内的总压损失很大。

`1` 张勇,闻苏平,胡小文.单级离心通风机内有叶扩压器与无叶扩压器流场数值模拟[J.风机技术,2007(2):3-6.

`2` 施小将.有叶扩压器在改进离心压缩机性能中的应用[J.风机技术,2002(2):19-21.

`3` Senoo Y, Hayami H, Ueki H. Low Solidity Tandem Cascade Diffusers for Wide Flow Range Centrifugal Blowers`J`. ASME Paper, 1983, No. 93-GT-108.

`4` Hayami H, Senoo Y, Utsunomiya K. Application of a Low-Solidity Cascade Diffuser to Transonic Centrifugal Compressor`J`. ASME Journal of Turbomachinery, January 1990.

`5` Engeda A. The Design and Performance Results of Simple Flat Plate Low Solidity Vaned Diffusers`J`.Proc Instn Mech Engrs Part A, 2001, 215: 109-118.

`6` Prasad Mukkavilli, Dasgupta A, Rama Raju G, Ramana Murty GV, Jagadeshwar Chary KV. Flow Studidies On A Centrifugal Compressor Stage With Low Solidity Diffuser Vanes`J`.ASME Paper 2002 GT-2002-30386.

`7` Siva Reddy T Ch, Prasad Mukkavilli, Ramana Murty G V, Reddy D N. Some Studies On Low Solidity Vaned Diffusers of A Centrifugal Compressor Stage`J`. ASME Paper, GT2005-68972.

`8` 赵晓路,王巍.离心压气机低稠度串列叶栅扩压器流场数值分析[J.工程热物理学报,1997,18(2):186-189.

`9` 费继友,戴冀,史敏,等.低稠度叶片扩压器形状参数的分析[J.流体机械,2007,35(6):14-17.

`10` 康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J.工程热物理学报,2005,26(3):400-404.

 
举报收藏 0打赏 0
 
更多>同类泵技术
推荐图文
推荐泵技术
点击排行
网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  版权声明  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报