扩压器稠度对离心压缩机性能影响的数值分析*
|
摘要 : 通过 CFD 手段,比较了几个不同稠度的叶片扩压器性能与内部流场损失分布,分析了稠度的变化对叶片扩压器喉部流动产生的影响,并对叶片扩压器通过减小叶片数和减小叶片弦长来改变稠度的两种不同方法进行分析,发现通过减小叶片数的方法能够获得较好的压缩机性能。
关键词: 离心式压缩机;叶片扩压器;稠度;弦长;数值模拟
中图分类号:TH452 文献标识码:B
Numerical Analysis on Performance of Centrifugal Compressor with Different Solidity Diffusers
Abstract: The performance and loss distribution in internal flow field of vaned diffuser with different solidity are studied through CFD software. The change of solidity has great impact on the flow in throat area. It is found that the method of reducing vane number with vaned diffuser to change solidity can obtain better compressor performance by comparing the method of reducing vane chord length.
Key words: centrifugal compressor; vaned diffuser; solidity; chord length; numerical simulation
0 引言
高效率和高压比的离心压缩机设计,除叶轮气动设计外,扩压器内的压力恢复性能也非常重要。无叶扩压器结构简单,性能曲线平坦,应用十分广泛。但无叶扩压器中 , 气流的流动方向角较小 , 速度周向分量大 , 所以流动路程较长 , 摩擦损失大。而在有叶扩压器中 , 叶片的形状和安装情况迫使气流流动的方向角逐渐增大 , 流程缩短 , 摩擦损失小`1`。施小将`2`就为一未达到设计参数的离心压缩机配加有叶扩压器,从而解决了其性能偏低的问题。但在变工况情况下,由于叶片扩压器的进口冲角损失较大,会使效率下降明显。当冲角增大到一定值后,就容易发生强烈的分离现象,导致压缩机的喘振。
Senoo`3`提出了低稠度叶片扩压器LSD的概念,指出正是几何喉口限制了叶片扩压器的堵塞流量,故除去几何喉口将提供比传统叶片扩压器更好的性能。它的结果表明:LSD在几乎不损失稳定工况范围的情况下,能达到相当好的压力恢复值。 Hayami等人`4`的研究也表明:在亚音速的离心压缩机中 , 稠度为0.69的叶片扩压器可以在不损失流量范围的情况下,获得比无叶扩压器更好的性能。 Engeda`5`对8个不同稠度的叶片扩压器进行了试验研究 , 认为当叶片稠度增加时 , 流动范围变窄,压力恢复系数提高。 Prasad Mukkavilli等人`6`的 研究结果表明,即使LSD也存在最优稠度和安装角。 Sivan Reddy T CH等人`7`发现扩压器的叶片弦长对静压恢复系数有影响,且叶片表面的静压分布显示,大流量下叶片表面静压要小于小流量下的。赵晓路等人和费继友等人`8-9`也对LSD的扩压性能进行了分析。
1 叶片扩压器模型
以某小型离心压缩机为计算模型,设计比转数为2.83,设计流量系数为0.0143,雷诺数为2.24×106。图1为离心压缩机子午面示意图,1-1为叶轮进口,2-2为叶轮出口,3-3为扩压器进口,4-4为扩压器出口。图2为叶轮与扩压器安装示意图,叶轮按逆时针旋转。同一叶轮匹配了7个不同的叶片扩压器和一个无叶扩压器VNL。
叶片的稠度:б=b/t=b/(2πr/n),其中b为叶片弦长;n为叶片数;r为叶栅进口半径。故叶片的稠度变化可以通过改变弦长b或叶片数n得到。计算中采用的7个不同的叶片扩压器Vn190、Vn165、Vn114、Vn090、Vn064、Vb090、Vb064,其中V指叶片扩压器;n/b表示改变的是叶片数n/弦长b;后3位数字则是叶片扩压器稠度的100倍值。Vn190即指弦长b不变,叶片数n变化,稠度为1.9的叶片扩压器。 |
|
|

